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i.  INTRODUCTION 

In this report, we shall develop constitutive relations 

for fluid-saturated porous media, suitable for inclusion in 

standard hydrodynamic codes (e.g., CRAM or SKIPPER).  The 

theoretical formulation is based on the models for fluid- 

saturated rock aggregates previously developed by Garg and 

Nur [1973] and Garg, et al^ [1975].  In the present analysis, 

we shall assume that there is no relative motion between the 

fluid and the solid (no fluid diffusion); this assumption is 

equivalent to requiring that [Garg, et al^, 1975] 

C k p 
, X » -2 1 

where 

I X - length scale of interest 

Uj - fluid viscosity 

P -  density of porous media o 

I Co " sPeed of sound in porous media 

k - permeability of porous media 

$ -  porosity 

♦        It is straightforward to verify that the above inequality is 
satisfied for many field situations involving shock/seismic 

wave propagation in fluid-saturated porous media.  The theo- 

retical formulation will be outlined in Section II.  A 

»        possible method for including the new constitutive model 

into standard hydrodynamic codes is described in Section III. 

^ 
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II.     THEORETICAL  FORMULATION 

"No fluid diffusion" hypothesis implies that the fluid 

mass M in a volume V of the rock/fluid composite remains 
constant.    Mathematically, 

Jt " 0 * (1) 

Noting that 

Vf « volume occupied by the fluid ■ <j)V , (2a) 

and defining 

Pf ■ fluid density = M/Vf , (2b) 

we have from (1) 

%     V 
pf " p,f Z V1 ' (3) 

where subscript 0 denotes the value of the subscripted 

variable at t » 0.  For a partially saturated media, fluid 

density as defined by (2b) is not equal to the real density 

of the fluid.  (In other words, we replace the real fluid 

by an extended fluid occupied by the volume Vf.)  This is 

particularly convenient for treating an initially partially 

saturated medium which upon shock loading (and resulting 

pore compaction) becomes fully saturated; in this case the 

fluid pressure pf will remain zero as long as  p-  is less 

than some reference density (say p ). 
o 

We now introduce the following mixture (solid/fluid) 

quantities: 

P (mixture density) ■ (1-0) p + <>Pf (4a) 

ai. (mixture stress) » -p S.. + S.. (4b) 
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Pc (mixture pressure) ■ (1-0)p + ip. (4c) 

.                (1-<«,)paEa + *fPEf E (mixture internal »  =-2 1—i.  f (4^) 
energy/unit mass) p 

where 

p = rock grain density 
9 

Sii " mixture deviatoric stress tensor 

Pg(pf) 
a solid (fluid) pressure, and 

Es(Ef) ■ solid (fluid) internal energy per unit mass. 

The mixture particle velocity v  is identically equal to the 
solid (fluid) velocity v (v-). 

Mixture density p, velocity v, and internal energy 

E are governed by the usual balance equations for a single 
continuum: 

§£• + p div v = 0 (5a) 

Dv 
p __ - div a + p^ (5b) 

DE p Dt ^ S : 7^ (5c) 

where 

0   3       3 
Dt " Tt + ^  37 * (5c) 

We will define the mixture strain-rate tensor to be 
the symmetric part of the velocity gradient.  Thus 

e - 1 (Vv + (VJ*] (6) 

I 
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The strain-rate tensor may be decomposed into isotropic (e) 

and deviatoric (e) parts as follows: 

•   e     • 
e = y I + e (7) 

where  I  is the unit tensor. 

Mixture density p  is related to  e through the re- 
lation: 

P = p exp{-e) , (8) 

Also, we have 

«C 
V /V = P/P ■ exp(~e) 

o       o (9) 

may Given  e  (Eq. 6) and 4>   (see below), p, p, and  p 
t       s 

then be determined from Eqs. (8), (3) and (4a) respectively. 

Now, we shall consider the question of energy 

partitioning between the solid and fluid phases.  Let t. 
and tr denote the time of interest and the thermal relaxa- 

tion time respectively.  If ti << tr, the adiabatic assump- 

tion (no thermal exchange between the solid and fluid phases) 

may be employed.  Similarly, the isothermal assumption 
(T f » Ta) is appropriate in the reverse case, i.e., when 
^ » tr, In the intermediate range (t - 0(ti)), it is 

necessary to adopt a constitutive model for heat flow be- 

tween the two phases (see, e.g., Riney, et al^ [1971]).  In 

laboratory situations, the adiabatic assumption is generally 

adequate.  Adiabatic assumption may not, however, be always 

appropriate <n field applications.  For the sake of sim- 

plicity, we will adopt the adiabatic assumption in the 

present analysis.  (It cannot be over-emphasized that this 

assumption may be invalid in specific applications.)  In 

this case, the fluid internal energy can be written as: 

—am 
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EÄ  ■ ■■/"•W f = "   /    pf a U7 do) 

P - Pc - Pf ♦i(s^) »  and 

J' ■ third invariant of deviatoric stresses 

(13b) 

Det (S). (13C) 

Given  Ef  (Eq. 10) and E  (Eq. 5c),  E  may be deter- 
mined from Eq. (4d). 

We now wish to prescribe the constitutive relations 

for the pressures (p . p-) and deviatoric stresses  S.  In 

the rock-fluid mixture, only the rock can sustain shear 

stresses; and one can therefore directly postulate shear 

laws for the entire composite. Vie  will assume the solid to 

be elastic-plastic; the shear stresses are assumed to be 

restricted by a yield criterion.  The shear laws are, there- 
fore, as follows: 

(i)   Elastic response or for unloading from yield 

surface (S : S < 2Y2) : 

S = 2ue (H) 

Here u denotes the shear modulus of the 

porous rock and Y  is the yield stress in 
shear. 

(ii)  Plastic response: 

S : S « 2Y2 (12) 

where 

I Y = Y(P) (13a) 

w . 1/3 
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I 

I . 

In writing down Eq. (13a), we have assumed that the yield 

surface Y of a porous rock is governed by the "effective 

stress law" (see, e.g., Garg and Nur [1973]).  A mixture 

model for pressures (pg, pf) can be formulated by assuming 

that the pressure law (p versus  p and E relationship) 

for each constituent as a single continuum applies in the 

mixture.  Thus 

Pf =  Pf(0f' If) 

Ps - ps(ps' V 

(14a) 

(14b) 

The above constitutive formulation is complete only 

when porosity <j) is prescribed.  Porosity 4> will, in 

general, depend upon pc,  pf,  S,  Eg,  Ef, and the past 

loading history.  In shock wave propagation th -ough dry 

rocks, it is often assumed (perhaps without much justifica- 

tion) that | depends only upon pressure PC.  For wet 

rocks, a similar model is formulated by assuming that 4> 

pf (see Gc.rg, et al^ [1975]). is a function of only p  and 
C 

0 - $(PC'   Pf) 

Empirical observations under Isotropie loading reveal that 

(|) is a particularly simple function of pc and pf;  <j> 

depends to a close approxi ration on pc - Pf. 

4> - <MPC - Pf) 

(15) 

(16) 

Function  <|) (p - pf)  may be determined from hydrostatic 

tests with pf kept at zero.  This completes the theoretical 

formulation.  In the next section, we shall outline an 

iterative procedure for incorporating this model into corven- 

tiona". hydrodynamic codes. 

Lm 
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• 
III.  ITERATIVE PROCEDURE FOR INCORPORATING 

THE THEORETICAL MODEL INTO 
COMPUTER CODES 

.^ 

In this section, we will describe a possible itera- 

tive procedure for incorporating the theoretical model of 

Section II into standard hydrodynamic codes.  This pro- 

cedure has not oeen tested, and may require minor adjust- 

ments to ensure convergence.  For the sake of convenience, 

the iterative procedure is presented below in a flow chart 

form.  (In the following, superscript n denotes the value 

of the superscripted variable at time t = nAt).  Given 

strain-rate tensor e at time t = (n+l)At and p^, <t>n, 
Ef'  pc'  p '  i •  I  an^ E ' t^e iteration procedure 
selves for pf1,  ♦n+1,  EJ+1,  p"+1, f*1.     Sn+1, and 
„n+l        ■ i     c - 

Iteration Procedure 

(Saved arrays are pf,  $,  Ef,  pc,  s,  E) 

Step i.  Initialize variables 

.n+1 n 

n+1   n 
Pf  * Pf 

<P   "0 

Ea  ■ [p E - p^  EfJ/[pg(l-(j) )] 
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' 
Stop 2.  Determine new strains 

e ■ Trace e 

e - e - y I 
M ••      J  *^ 

e
n+1 - e

n + At e 

e   - e + At e 

Step 3.  Start of Iteration Loop 

C" 

Step 3A. n+1  .n+1  .n+1 
i     ► * i Calculate  p 

Pn+1 = PO exp(-t
n+1) 

.n+1 n+1  „n+l.n+1 n+1, (p— - ir**Y )/{Xm*    * 

Step 3B. Calculate new shear stresses 

u - Max (tu (I-E"
+1
/E Jl, 0) o    s   in 

(y -  shear modulus at room temperature) o 
(EJJJ n  specific internal energy for the solid 

phase at incipient melting) 

AS = 2y At e 

Sn+1 - Sn + AS 

j.n+1 .   [sn+l  |  sn+l]/2 
2        -       «• 

J'n+1 - DetlSn+1] 
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. f"*1 - (p^1 - p?+1> + 
/j'n+1 \ 

1/3 

Y"*1 - Y (f*1)    x (1 - E"+1/Em) o s   m 

Yn+1 - MaxCY11*1,   0) 

(Y   (P)   * yield strength at room temperature) 

n+1 v^r If    tlJ^1 >  Yn+1,   then set Sn+1 - Sn+1    Y 

^ 
n+I 

.« 

Step 3C.  Calculate new internal energies 

E = -(p + q)
n+1: ♦ Sn+1 : e 

(q - artificial viscosity 

v * specific volume » 1/p) 

En+1 « En + At E 

^-fc)-*!!4^^-] 
(vf ~ specific vo.'une of fluid) 

AEf - -pj
+1 Av1 

E;
+1
 - Ej + AEf 

En.: . [pn+lEn+l . ^^^h/iP?1 il-*n+1)] 

-••     — —  !5 ■■ ■■ 
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Step 3D.  Calculate new pressures 

Pn+1 = P (En+1, pn+1) 
s     sv s  ' ^s  ' 

if1 - P((Ej
+1, „jT1) 

p^l . (i - 4,''
+l,pn

+l + ♦"-Ip^l 

Step 3E.  Test for convergence 

If abs(p*J+ - p") < Apn exit iteration loop 

A ■ preset constant 

Otherwise, continue to Step 3F 

Step 3F.  Calculate new porosity 

I *n+1-«(pf1-p?+1) 

Go to start of Iteration Loop 

10 
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IV.  CONCLUDING REMARKS 

The preceding sections describe a simple constitu- 

tive model for fluid-saturated porous rocks.  In developing 

the constitutive model, it was assumed that (1) there is no 

relative motion between the fluid and the solid, (2) no sig- 

nificant heat exchange occurs between the solid and fluid 

phases, and (3) porosity 4) is a function of only the mix- 

ture pressure pc and fluid pressure pf. The last two 

assumptions may not be valid under certain field conditions. 

These assumptions can, however, be relaxed at the expense of 

some simplicity [Riney, et al^, 1971; Garg, 1975]. 

11 



R-2766 

REFERENCES 

Garg, S. K., and A. Nur, J. Geophys. Res., 78, 5911 (1973), 

Garg, S. K., Systems, Science and Software Report SSS-R-75- 
2527, January 1975. 

Garg, S. K., D. H. Brownell, Jr., J. W. Pritchett, and 
R. G. Herrmann, J. Appl. Phys., 46, 702 (1975). 

Riney, T. D., S. K. Garg, J. W. Kirsch, C. R. Hastings, 
and K. G. Hamilton, Systems, Science and Software 
Report 3SR-648, Julj 1971. 

.r 

12 

 . 


